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Abstract
A correlation in x-ray resonant scattering between crystal chirality and circular polarization
(helicity) is explored in the context of an analysis of Bragg diffraction from low quartz
(α-SiO2). There is a one-to-one correlation between chirality and helicity when one resonant
event is present in diffraction and thus, in this simple case, resonant Bragg diffraction of
circularly polarized x-rays is a direct probe of crystal chirality. The presence of more than one
resonant event is shown to add phase relations to the scattering amplitude and then coupling of
helicity and chirality is no longer transparent.

1. Introduction

X-ray diffraction is an established experimental technique by
which to determine electronic structure. Thomson scattering
from charge distributions, and its magnetic counterpart,
yield accurate information on the charge density and the
configuration and distribution of the magnetization. Resonant
enhancement of the scattering amplitude, achieved by tuning
the primary energy to an atomic resonance, provides additional
information on charge, orbital and spins degrees of freedom not
available from other experimental techniques. In 1980 [1] and
1982 [2] Templeton and Templeton reported seminal studies of
x-ray dichroism and polarized anomalous scattering. These,
and related, diffraction methods have developed apace with
burgeoning performance from x-ray synchrotron sources to
a current status of almost standard experimental methods.
A review of experiments on non-magnetic materials using
resonant x-ray Bragg diffraction has been made by Dmitrienko
et al [3].

Electronic properties of materials, and particularly
molecular compounds, can depend on their structural
handedness, or chirality. It has recently been demonstrated by
Tanaka et al [4], in a study by resonant Bragg diffraction of
the enantiomers of low quartz, that circular polarization in a

beam of x-rays directly couples to an enantiomorphic screw-
axis. This finding demonstrates a new feature in resonant
Bragg diffraction that may have wide ranging ramifications in
our ability to characterize a chiral configuration of ions.

In the following sections we report a theoretical analysis
of resonant Bragg diffraction from crystal structures P3121
(#152, right-handed) and P3221 (#154, left-handed) that
are enantiomorphically (mirror) related. This particular
enantiomorphic space-group pair, one of eleven such pairs,
describes the enantiomers of low quartz [5].

An atomic model of electronic structure is described in
section 2, together with the appropriate generic expressions for
a unit-cell structure factor and the intensity of a diffracted x-
ray beam endowed with both linear and circular polarization.
The formalism used in section 2, and the subsequent sections,
is reviewed by Lovesey et al [6] and Collins et al [7]. Structure
factors for low quartz are given in section 3 and used in
section 4 to derive relations between structure factors for the
enantiomers that cover both parity-even (E1–E1) and parity-
odd (E1–M1 and E1–E2) resonant events. Diffraction at the
space-group forbidden reflections (00l) with l �= 3n and
enhancement by an E1–E1 event is the subject of section 5.
Applied to data gathered on low quartz [4] this scenario does
not provide an adequate analysis. Thus we are led in section 6
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to calculate intensity derived from a coherent mixture of parity-
even and parity-odd events that has been shown to successfully
describe the data available on low quartz [4]. In section 6 we
use unit-cell structure factors for E1–M1 and E1–E2 events
that are relegated to appendices. In section 7 we show that
an extended version of diffraction by the E1–E1 event cannot
account for observations on low quartz. To set off our findings
for a crystal with an enantiomorphic screw-axis, we provide in
section 8 unit-cell structure factors for space groups with the
neutral screw-axis 21. We conclude in section 9 with a brief
discussion of our findings.

2. Diffracted intensity

Ground-state electronic structure at the site of a resonant ion is
described by atomic multipoles that are expectation values of
spherical tensor operators of rank K , where K = 0 (scalar), 1
(dipole), 2 (quadrupole), etc. We denote a sum of multipoles
in a unit cell of the crystal by �K . The generic form of a
unit-cell structure factor in the scattering amplitude for Bragg
diffraction is,

Fμν =
∑

K

XK
μν · DK ·ΨK . (2.1)

In this expression XK
μν describes conditions of the primary and

secondary x-rays and states of polarization are labelled by μ
and ν. Later, we simulate diffraction enhanced by E1–E1,
E1–M1 and E1–E2 events, and there is a different XK

μν for
each event. Orientation of the crystal, with respect to states
of polarization and the plane of scattering, is accomplished
by a rotation matrix DK . To describe the geometry of
the diffraction instrument we use right-handed, orthonormal
Cartesian coordinates (xyz) with σ -polarization parallel to the
z-axis and the Bragg wavevector (hkl) anti-parallel to the x-
axis.

Let us assume that a contribution to the resonant scattering
amplitude can be written Gμν = d(E)Fμν , to a good
approximation, where E is the energy of the x-ray beam
and d(E) describes the resonant behaviour of the particular
event. The diffracted intensity, I0, is a sum of purely real
products of Gμν , that in general are associated with different
resonant events, plus Thomson intensity if the reflection is
space-group allowed. I0 is also a linear function of states of
polarization in the primary beam. We describe polarization
by Stokes parameters P2 and P3 and with full polarization
P2

2 + P2
3 = 1. The parameter P2 is the mean helicity in the

beam and P3 is the linear polarization with P3 = +1(−1)
corresponding to complete linear σ -polarization normal (π -
polarization parallel) to the plane of scattering. With this
notation, the diffracted intensity is,

I0 = 1
2 (1 + P3)

(|Gσ ′σ |2 + |Gπ ′σ |2
)

+ 1
2 (1 − P3)

(|Gπ ′π |2 + |Gσ ′π |2
)

+ P2 Im
(
G∗
σ ′πGσ ′σ + G∗

π ′πGπ ′σ
)
. (2.2)

As we shall see in our analysis of diffraction by low quartz,
the coefficient of P2 in this expression can be different from
zero because the crystal contains an enantiomorphic screw-
axis, and because there is an appropriate phase shift between

two or more resonant amplitudes. For Thomson scattering the
coefficient of P2 is zero because there are no contributions to
diffraction in channels with rotated polarization.

3. Structure factors

Low quartz uses sites with multiplicity 3 and Wyckoff letter a
for silicon ions in the enantiomorphic space-group pair P3121
(#152, right-handed) and P3221 (#154, left-handed). The site
−x,−x, 0 occurs in unit cells of both enantiomers and because
of its commonality it is used by us as the reference site. The
remaining two sites in the cell are related by rotations ±120◦
about the c-axis to the reference site. A multipole for the
reference site is written 〈T K

Q 〉 where the projection Q satisfies
−K � Q � K . The structure factor for #152 and Miller
indices (hkl) is found to be,

�K
Q = 〈T K

Q 〉{e2π iQ/3e2π i(hx+l/3) + e−2π iQ/3e2π i(kx−l/3)

+ e−2π ix(h+k)
}
. (3.1)

Space-group allowed reflections satisfy the condition�K
0 (hkl)

�= 0, namely, (00l) : l = 3n. The structure factor for #154
can be derived from (3.1) simply by changing the sign of l. In
consequence, diffraction at (hk0) cannot distinguish between
enantiomers.

Right-handed orthonormal quantization axes (ξηζ ) for
the reference site have the ξ -axis coincident with the diad
axis of rotation symmetry through −x,−x, 0 and the ζ -axis
coincident with the crystal c-axis. Note that our ξ -axis lies in
the plane spanned by reciprocal lattice vectors a∗ (normal to
cell vectors bh and ch) and b∗, and a∗ and the ξ -axis enclose an
angle of 30◦. Physical properties of the crystal are unchanged
by a rotation of 180◦ about the ξ -axis, of course.

In general, a multipole is a complex quantity 〈T K
Q 〉 =

〈T K
Q 〉′ + i〈T K

Q 〉′′ that satisfies 〈T K
Q 〉∗ = (−1)Q〈T K

−Q〉. The diad
axis of symmetry at the reference site is satisfied if,

〈T K
Q 〉 = (−1)K 〈T K

−Q〉 = (−1)K+Q〈T K
Q 〉∗. (3.2)

Thus a multipole with K + Q even (odd) is purely real
(imaginary).

All results thus far in this section apply to both parity-even
and parity-odd events, and their associated multipoles, since at
no stage have we had occasion to use the operator that inverts
signs of all spatial coordinates.

We will reserve 〈T K
Q 〉 to denote a parity-even multipole

which occurs in an E1–E1 event, for example. For such an
event, the rank K is even when the material of interest is
non-magnetic. A time-even, parity-odd multipole is denoted
〈U K

Q 〉 and it is often called a polar multipole, e.g., an operator
equivalent for a polar dipole, U1, is the unit direction vector.
Polar multipoles arise in E1–M1 (K = 0, 1, 2) and E1–E2
(K = 1, 2, 3) events. A polar multipole of even rank has the
symmetry of a pseudotensor (K = 0 is a pseudoscalar like the
Stokes parameter P2 for helicity) and with K odd it has the
symmetry of a true tensor.
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4. Diffraction at (00l)

Setting h = k = 0 in (3.1) we find,

�K
Q (#152) = 〈T K

Q 〉
{

1 + 2 cos

[
2π

3
(Q + l)

]}
. (4.1)

Using the operation of a diad axis of rotation symmetry on a
multipole, expressed in (3.2), it is a simple matter to show that,
for the reflection (00l),

�K
Q (#154) = (−1)K�K

−Q(#152). (4.2)

The structure factor #152 can be different from zero if l + Q =
3n, while the corresponding condition is l − Q = 3n for
#154. In the following we consider the space-group forbidden
reflection (001) and a maximum value of 4 for K . For these
conditions allowed Q have a difference 
Q = ±3 where
the upper (lower) sign applies to #152 (#154), and the sign in

Q is related to the hand of the enantiomorphic screw-axis.
Allowed values for 
Q express three-fold rotation symmetry
caused by the enantiomorphic screw-axis. This is in contrast,
say, to resonant diffraction from Fe ions in haematite or Cr
ions in chromium sesquioxide. These ions lie on the trigonal
axis of the corundum structure R3̄c with three-fold rotation site
symmetry (point group C3) [6].

4.1. Parity-even event

Unit-cell structure factors for channels of diffraction in which
polarization is rotated (σ ↔ π) are related by a change in sign
of the Bragg angle, θ . We find,

Ft
π ′σ (θ) = Ft

σ ′π(−θ), (4.3)

where the prime is attached to polarization in the secondary
beam, and the superscript t denotes a parity-even event
described by multipoles 〈T K

Q 〉.
Expression (4.2) enables us to prove simple and very

useful relations between structure factors for the enantiomers.
Let a crystal be rotated by an angle ψ about the Bragg
wavevector (00l). For diffraction without rotation of the
polarization,

Ft
μ′μ(#152, ψ) = Ft

μ′μ(#154,−ψ),

while for the π ′σ channel,

Ft
π ′σ (#152, ψ) = −Ft

π ′σ (#154,−ψ), (4.4)

and the structure factor for the σ ′π channel is derived
from (4.3). These equalities taken together lead to the general
statement,

Ft
μν(#152, ψ) = {Ft

μν(#154, ψ)}∗. (4.5)

When (4.5) is used in expression (2.2) for the diffracted
intensity it follows immediately that the coefficient of P2 is of
opposite sign for the enantiomers. In other words, in diffraction
enhanced by a single resonant event, circular polarization (x-
ray helicity) and crystal chirality are directly coupled. We
reach the same conclusion with a parity-odd event although
intermediate steps for parity-even and parity-odd are different.

4.2. Parity-odd event

In place of (4.3) and (4.4) we find,

Fu
π ′σ (θ) = −Fu

σ ′π (−θ), (4.6)

and,
Fu
μ′μ(#152, ψ) = −Fu

μ′μ(#154,−ψ),
Fu
π ′σ (#152, ψ) = Fu

π ′σ (#154,−ψ).
(4.7)

Taken together (4.6) and (4.7) lead to,

Fu
μν(#152, ψ) = −{Fu

μν(#154, ψ)}∗. (4.8)

The last expression applied in (2.2) demonstrates, for a single
parity-odd event, exactly the same correlation between helicity
and an enantiomorphic screw-axis that we established for a
single parity-even event.

It is perhaps worth remarking that, sign differences
between (4.3)–(4.5) and (4.6)–(4.8) are a simple and direct
consequence of differences between XK

μν for the two types of
event.

5. E1–E1 unit-cell structure factors (001)

Reference [6] contains an explicit expression for the rotation
matrix DK required in (2.1). With the azimuthal angle
ψ = 0 the crystal c-axis is anti-parallel to the x-axis,
and the quantization ξ -axis is anti-parallel to the z-axis (σ -
polarization).

The multipole K = Q = 0 is forbidden because (001) is
a space-group forbidden reflection, and the parity-even dipole
is zero in a non-magnetic structure. From (2.1) and (4.1) and a
reflection (001) we find for the enantiomer #152,

Ft
σ ′σ = 3

2 〈T 2
+2〉′, (5.1)

Ft
π ′π = 3

2 〈T 2
+2〉′ sin2 θ, (5.2)

Ft
π ′σ = i 3

2

{〈T 2
+2〉′ sin θ + 〈T 2

+1〉′′ cos θ e−3iψ
}
. (5.3)

From (4.3) one sees that Ft
σ ′π and Ft

π ′σ are not the same. In
the expressions (5.1)–(5.3) we omit a common factor exp(2iψ)
since such a phase in a unit-cell structure factor cancels in the
intensity. (The factor is only common to resonant events and
it does not cancel in the intensity of a space-group allowed
reflection derived from a coherent sum of Thomson scattering
and resonant scattering.) The quadrupole is separated in to its
real and imaginary parts; with respect to the quantization axes,
〈T 2

+1〉′′ and 〈T 2
+2〉′ have angular symmetries ζη and ξξ − ηη,

respectively. Note that three-fold rotation symmetry from the
31-axis is manifest only in rotated channels of diffraction.
Dependence of the diffracted intensity on circular polarization
in the primary x-ray beam is permitted by a difference in the
phase that can occur between structure factors diagonal and
off-diagonal in the states of polarization. Unit-cell structure
factors for #154 can be derived from (5.1)–(5.3) using (4.5).

The intensity (2.2) derived with (5.1)–(5.3) is a function
of cos(3ψ) which does not match data gathered on low
quartz [4]. Thus, in the next section we explore consequences
of additional events in resonant diffraction.

3
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6. Coherent mixture of parity-even and
parity-odd events

Unit-cell structure factors for the parity-odd events E1–M1 and
E1–E2 are provided in appendices. From these and results
for the E1–E1 event in section 5, or directly from the general
statements in section 4, one can quickly establish the generic
form of structure factors that describe a coherent mixture of
parity-even and parity-odd events. Such a mixture is required
in a successful analysis of available diffraction data [4].

We extract in the scattering amplitude as a common factor
the resonance denominator de(E) associated with the E1–
E1 event. Thus the mixing parameter between the parity-
even and parity-odd events contains a ratio of their energy
denominators do(E)/de(E) = exp(iη)|do(E)/de(E)|. Only
the phase exp(iη) is significant in setting properties of the
diffracted intensity and the modulus of the ratio is absorbed
in to polar multipoles. The mixing angle η = 0 if resonance
events occur at the same energy, i.e., 
e = 
o, and η = 90◦
in the opposite extreme of well-separated resonances for which
|
e −
o| 	 o where o is the total width of the parity-odd
resonance.

To simplify our expressions for the diffracted intensity as
a function of Stokes parameters we use purely real quantities
Ta = (3/2)〈T 2

+2〉′ and Tβ = (3/2)〈T 2
+1〉′′ cos θ . For polar

multipoles, in either E1–M1 or E1–E2, we use purely real
quantities U f with f = a, b, α and β , and explicit expressions
for U f in terms of 〈U K

Q 〉 may be read off from results for Fu in
the appendices. We will introduce a parameter ν = ±1 that has
the physical significance of crystal chirality with ν = +1(−1)
for enantiomer #152 (#154). The four contributions to the
space-group forbidden diffraction amplitude are,

Gσ ′σ = Ta + νUaeiη, (6.1)

Gπ ′π = Ta sin2 θ + νUb eiη, (6.2)

Gπ ′σ = i{α + β e−3iνψ }, (6.3)

Gσ ′π = i{−α + β e−3iνψ }, (6.4)

with,
α = νTa sin θ + Uα eiη, (6.5)

β = νTβ + Uβ eiη. (6.6)

The corresponding intensity (2.2) is,

I0 = I0(ν, P2)+I1(ν, P2) cos(3ψ)+I2(ν, P2) sin(3ψ). (6.7)

As anticipated, the intensity (6.7) is a three-fold periodic
function of the azimuthal angle, ψ . Recall that, for ψ = 0
the ξ -axis is normal to the plane of scattering and anti-parallel
to σ -polarization. Also, the ξ -axis does not coincide with a
reciprocal lattice vector.

Explicit expressions for the three coefficients in (6.7)
follow later in this section. First, however, we note the
following physically significant properties of the coefficients.
The coefficient I2(ν, P2) vanishes in the limit of a single
resonance, with either U f = 0 or Ta = Tβ = 0. In this
limiting case, the coefficients I0(ν, P2) and I1(ν, P2) satisfy
the key identity Ip(ν, P2) = Ip(−ν,−P2) with p = 0, 1, and

the identity expresses a one-to-one correspondence established
in section 4 between crystal chirality and x-ray helicity. The
coefficients I0(ν, P2) and I1(ν, P2) in the general case do not
satisfy the identity, and chirality and helicity are not correlated.
However, they do satisfy the identity in one other limit and
that is when the parity-even and parity-odd resonances are
well separated in energy and the mixing angle η = 90◦.
Returning to properties of the third coefficient, one finds
I2(ν, P2) = I2(−ν,−P2) for all η. (The definition of I2(ν, P2)

is changed compared to [4] by absorbing in it the factor ν from
sin(3νψ) ≡ ν sin(3ψ). This change of definition is merely
cosmetic and it is done simply to give I2(ν, P2) properties
akin to those of I0(ν, P2) and I1(ν, P2).) I2(ν, P2) vanishes
for η = 0 but with this condition on the mixing angle the
remaining two coefficients, I0 and I1, need not satisfy the
identity coupling helicity to chirality.

We conclude the section with expressions for the three
coefficients in (6.7).

I0(ν, P2) = 1
2

{
T 2

a (1 + sin2 θ)2 + U 2
a

+ U 2
b + 2U 2

α + 2(T 2
β + U 2

β)

+ 2ν cos η[Ta(Ua + Ub sin2 θ)+ 2(TaUα sin θ + TβUβ)]
+ P3[T 2

a cos2 θ(1 + sin2 θ)+ U 2
a − U 2

b

+ 2ν cos ηTa(Ua − Ub sin2 θ)]}

+ P2
[
ν{T 2

a sin θ(1 + sin2 θ)+ Uα(Ua + Ub)}
+ cos η{Ta(Ua + Ub) sin θ + TaUα(1 + sin2 θ)}], (6.8)

I1(ν, P2) = 2P3[Ta Tβ sin θ + UαUβ

+ν cos η{TaUβ sin θ + TβUα}]
+ P2

[
ν{Uβ(Ub − Ua)− TaTβ cos2 θ}

+ cos η{Tβ(Ub − Ua)− TaUβ cos2 θ}], (6.9)

I2(ν, P2) = − sin η
{
2P3(TβUα − TaUβ sin θ)

+ νP2(TaUβ cos2 θ + Tβ(Ub − Ua))
}
. (6.10)

7. Extended simulation of E1–E1 diffraction at (001)

Results presented in sections 5 and 6 are independent of the
core state that participates in the virtual, intermediate state
of the resonance process. The simplification is appropriate
when the core state has no angular anisotropy, to a good
approximation, and its dependence on the projection Mc in a
spin–orbit split state Jc,Mc is safely eliminated. The actual
situation is simulated by an effective exchange field Hs, derived
from Slater integrals Gk [8, 9], that splits the core state in to
(2Jc + 1) sublevels with relative energy positions = Hs(g −
1)Mc where g is the Landé factor. In consequence, unit-
cell structure factors also depend on Mc. Here we consider
how this correction of the E1–E1 scattering amplitude given
in section 5 to its most general form alters conclusions about
the dependence of the diffracted intensity on x-ray helicity and
crystal chirality.

With Jc = 1/2 (K-shell absorption edge) in the work
reported in [10, 11] it is a simple matter to show that for low
quartz the correction has no effect on diffraction in channels
with unrotated polarization. Hence, by using the notation
in (6.1)–(6.6),

Gσ ′σ = 1
2 d(E,Mc)Ta, (7.1)

4
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Gπ ′π = 1
2 d(E,Mc)Ta sin2 θ, (7.2)

where the energy denominator in d(E,Mc) includes the
exchange energy Hs(g − 1)Mc with Mc = ±1/2, and the
prefactor 1/2 accounts for the (2Jc + 1) = 2 multiplicity. One
can also use,

Gπ ′σ = i d(E,Mc)
{
α + β e−3iνψ

}
, (7.3)

Gσ ′π = i d(E,Mc)
{−α + β e−3iνψ

}
, (7.4)

with,
α = 1

2νTa sin θ. (7.5)

However, the quantity β is now complex and it depends
explicitly on Mc. We find,

β = ν

[
1

2
Tβ + i

1√
6

Mc〈P+1〉′′ sin θ

]
. (7.6)

The quadrupole 〈PQ〉 also arises in sum rules for linear
dichroism [12]. Whereas the tensor 〈T K

Q 〉 is proportional
to the unit Racah tensor W (0K )K , the multipole 〈PQ〉 is
proportional to W (11)2. The additional term in (7.6) is
consistent with the requirement that the amplitude satisfies
crossing symmetry. Note that, a sum on the two values of
Mc over the amplitudes (7.1)–(7.6) with Hs = 0 exactly
reproduces results reported in section 5.

The amplitudes (7.1)–(7.6) are responsible for diffracted
intensity like (6.7). As we also found in section 5, the
coefficients I0(ν, P2) and I1(ν, P2) in the intensity for the
extended simulation of E1–E1 diffraction under discussion
satisfy the identity Ip(ν, P2) = Ip(−ν,−P2) with p = 0, 1.
Most importantly, in the extended simulation I2(ν, P2) can be
different from zero, although it does not satisfy the key identity
that correlates x-ray helicity with crystal chirality. We find,

I2(ν, P2) = 1
8

√
3
2 {|d(E, 1/2)|2 − |d(E,−1/2)|2}

×〈T 2
+2〉′〈P+1〉′′ sin θ [2νP3 sin θ − P2 cos2 θ ]. (7.7)

As expected, this expression does vanish for a single resonance
process achieved by the choice Hs = 0, for then the difference
between the two energy factors vanishes. The expression (7.7)
for I2(ν, P2) does not correlate ν with P2 and in this respect it
differs from (6.10) which is appropriate for diffraction from a
coherent mixture of parity-even and parity-odd events.

8. Neutral screw-axis

Let us discuss properties of compounds whose structure is
described by a space group that contains a neutral screw-
axis to better appreciate features we have highlighted for an
enantiomorphic screw-axis. We pay attention to the neutral
screw-axis 21 and three structures that, in common with the
space groups of low quartz, belong to crystal classes that
allow optical activity and, also, are enantiomorphic; P21 (#4,
monoclinic, crystal class C2), P212121 (#19, orthorhombic,
crystal class D2) and P213 (#198, cubic, crystal class T ).
Space groups #4 and #19 are the most common for single
enantiomorphs of molecular compounds. The cubic space

group #198 applies to the much-studied compounds NaClO3

and NaBrO3. These materials possess the same chirality
yet opposite senses of optical rotation [13]. Templeton and
Templeton [14] measured the azimuthal angle dependence
of forbidden reflections, (00l) with odd l, for NaBrO3 at
the bromine K-absorption edge. Previously, Templeton and
Templeton [2] observed anisotropic anomalous scattering in a
diffraction experiment with sodium uranyl acetate which has a
crystal structure P213.

The structure factors for all space groups considered in this
section possess the selection rule even l + Q for reflections
(00l). Consequently, diffraction with odd l is space-group
forbidden. In #4 we elect to have a unique axis c, and we may
choose the position coordinate z = 0 without loss of generality.
We find,

�K
Q (#4) = {1 + (−1)l+Q}〈U K

Q 〉 : sites 2(a), (8.1)

�K
Q (#19) = {1 + (−1)l+Q}{〈U K

Q 〉eiφ

+ (−1)K 〈U K
−Q〉e−iφ} : sites 4(a), (8.2)

and,

�K
Q (#198) = {1 + (−1)l+Q}{〈U K

Q 〉eiφ

+ (−1)K 〈U K
−Q〉e−iφ}. (8.3)

In (8.2) and (8.3) the phase φ = 2πzl. Expression (8.3) is valid
for sites 4(a) in #198 used by Na and Br (Cl) in sodium bromate
(chlorate) with z = 0.078, 0.407 for Na and Br, and z = 0.069
and 0.418 for Na and Cl [13]. The environments in #4 and
#19 have no symmetry, whereas 4(a) in #198 has triad axes of
symmetry about the four cube diagonals. We have written the
structure factors (8.1)–(8.3) for parity-odd events but they hold
equally for parity-even events with 〈T K

Q 〉 replacing 〈U K
Q 〉.

Let us note that the foregoing structure factors can be
different from zero for Miller indices h = k = l = 0 when
they describe bulk properties. From this we learn that natural
circular dichroism P2�

u,K
0 with K = 0, 2 is allowed. The

pseudoscalar �u,0
0 is the chirality of a crystal and it is found in

the E1–M1 resonance event. Turning back to (3.1), all these
findings also hold for the enantiomers of low quartz.

Diffraction is forbidden at (00l) with odd l and space
groups #4, #19, and #198 in channels with unrotated
polarization. Absence of diffraction in the σ ′σ and π ′π
channels for both parity-even and parity-odd events is a direct
consequence of the condition that diffraction is only allowed
for odd Q. Applied in (2.2), absence of diffraction in the
σ ′σ and π ′π channels means that the diffracted intensity is
independent of circular polarization, which contrasts with what
we find in diffraction by a crystal with an enantiomorphic
screw-axis.

Unit-cell structure factors for #198, and an E1–E1 event,
are found to be,

Ft
π ′σ (#198) = Ft

σ ′π (#198)

= 4〈T 2
+1〉′ cos θ{cosφ sinψ − i sinφ cosψ}, (8.4)

and, for the E1–E2 event,

Fu
π ′σ (#198) = 4

√
2
15 sin(2θ)

{ − 〈U 2
+1〉′�

+ 1
2

√
3
5�

∗( −
√

3
2 〈U 1

0 〉′ + 〈U 3
0 〉′)}, (8.5)
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with,
� = sinφ sinψ − i cosφ cosψ.

In these results the origin of the azimuthal angle dependence
has the crystal a-axis normal to the plane of scattering and
anti-parallel to σ -polarization. The results (8.4) agrees with
Templeton and Templeton [14] when their parameter b in
expression (9) is identified with our quadrupole 〈T 2

+1〉′.
Lastly, we give the E1–E1 unit-cell structure factor for

diffraction at (00l) with odd l by space group #19. We
find,

Ft
π ′σ (#19) = Ft

σ ′π (#19)

= 4 cos θ{〈T 2
+1〉′′ cosφ sinψ − i〈T 2

+1〉′ sinφ cosψ}. (8.6)

The result (8.4) is obtained from (8.6) when the symmetry of
the site 4(a) in #198 is imposed, leading to 〈T 2

+1〉′ = 〈T 2
+1〉′′.

An expression for the intensity of forbidden reflections (00l)
in #19 derived by Kirfel and Petcov [15] agrees with the
intensity |Ft

π ′σ (#19)|2 when, as here, all contributions to the
E1–E1 amplitude are taken at the same energy and there is one
common energy factor d(E).

9. Discussion

We have explored a correlation between x-ray helicity
and crystal chirality in resonant Bragg diffraction. That
a correlation may exist between these two pseudoscalar
parameters is intuitively understandable. In the simplest
model of resonant diffraction, a simple, one-to-one correlation
between the two parameters does indeed exist. Thus
resonant Bragg diffraction of circularly polarized x-rays can
be a direct probe of crystal chirality. With the aid of an
atomic model of electron degrees of freedom, we explore
likely complicating features from coherent resonant events
that introduce additional phase information in the scattering
amplitude. In particular, we give a full account of diffraction
by crystals that are an enantiomorphic space-group pair with
scattering enhanced by a coherent sum of parity-even (E1–
E1) and parity-odd (E1–E2 or E1–M1) resonant events. The
derived intensity successfully explains all aspects of diffraction
by low quartz (α-SiO2) [4].

It is well known that, two crystal forms that differ by
their handedness can be distinguished in x-ray diffraction
by exploiting the violation of Friedel’s law from anomalous
scattering [16]. Less well established, at this time, for the
determination of an absolute structure is the technique of
three-beam diffraction [17]. This works independently of
anomalous scattering with the attendant scope of determining
absolute structure of compounds containing predominantly
light ions. Crystal handedness may be observed in three-beam
diffraction of circularly polarized x-rays [18–20]. With these
techniques, anomalous scattering and three-beam diffraction,
distinction between enantiomorphs is based on whether
calculated quantities agree or not with observations, namely,
for one of the two enantiomorphs matching calculated and
observed intensities in suitable Bijvoet pairs or the sign of the
three-beam phase. All these techniques are also less discerning
than our use of resonant diffraction of circularly polarized

x-rays because, in principle, the techniques can distinguish
crystal forms which use either self-enantiomeric space groups,
of the type considered in section 8, and an enantiomorphic
space-group pair, e.g., space groups #152 and #154.
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Appendix A. Unit-cell structure factors (E1–M1)
for #152

Fu
σ ′σ = Fu

π ′π = 3〈U 2
+2〉′ sin θ (A.1)

Fu
π ′σ = i 3

2 {〈U 2
+2〉′(1 + sin2 θ)− 〈U 1

+1〉′ sin(2θ)e−3iψ}. (A.2)

Appendix B. Unit-cell structure factors (E1–E2)
for #152

Fu
σ ′σ =

√
3
10 sin θ{√2〈U 3

+2〉′′ − 〈U 2
+2〉′} (B.1)

Fu
π ′π =

√
3
10 {

√
2〈U 3

+2〉′′ sin3 θ + 〈U 2
+2〉′ sin(3θ)} (B.2)

Fu
π ′σ = i

{√
3

5
(〈U 3

+2〉′′ sin2 θ + 1

4
√

2
〈U 2

+2〉′[1 + 5 cos(2θ)])

+ 3
10

√
3
2 sin(2θ)e−3iψ

[〈U 1
+1〉′ + 4

3 〈U 3
+1〉′

+ 2
3

√
5〈U 2

+1〉′′
]}
. (B.3)
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